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A Survey on Learning to Hash

Jingdong Wang, Heng Tao Shen, and Ting Zhang

Abstract—Nearest neighbor search is a problem of finding the data points from a database such that the distances from them to the
query point are the smallest. Learning to hash is one of the major solutions to this problem and has been widely studied recently. In this
paper, we present a comprehensive survey of the learning to hash algorithms, categorize them according to the manners of preserving
the similarities into: pairwise similarity preserving, multiwise similarity preserving, implicit similarity preserving, as well as quantization,
and discuss their relations. We separate quantization from pairwise similarity preserving as the objective function is very different
though quantization, as we show, can be derived from preserving the pairwise similarities. In addition, we present the evaluation
protocols, and the general performance analysis and point out that the quantization algorithms perform superiorly in terms of search
accuracy, search time cost, and space cost. Finally, we introduce a few future directions.

Index Terms—Similarity search, approximate nearest neighbor search, hashing, learning to hash, quantization, pairwise similarity
preserving, multiwise similarity preserving, implicit similarity preserving.

1 INTRODUCTION

HE problem of nearest neighbor search, also known as
T similarity search, proximity search, or close item search,
is aimed at finding an item, called nearest neighbor, which is
the nearest to a query item under a certain distance measure
from a search (reference) database. The cost of finding the
exact nearest neighbor is prohibitively high in the case that
the reference database is very large or that computing the
distance between the query item and the database item
is costly. The alternative approach, approximate nearest
neighbor search, is more efficient and is shown to be enough
and useful for many practical problems, thus attracting an
enormous number of research efforts.

Hashing, a widely-studied solution to approximate near-
est neighbor search, aims to transforming the data item to
a low-dimensional representation, or equivalently a short
code consisting of a sequence of bits, called hash code. There
are two main categories of hashing algorithms: locality sen-
sitive hashing [29] and learning to hash. Locality sensitive
hashing (LSH) is data-independent. The research efforts
mainly come from the theory community, such as proposing
random hash functions satisfying the local sensitive prop-
erty for various distance measures [5], [6], [7], [10], [11],
[69], [78], proving better search efficiency and accuracy [10],
[60], and developing better search schemes [15], [15], [67],
and the machine learning community, such as developing
hash functions providing a similarity estimator with smaller
variance [47], [37], [51], [36], or smaller storage [49], [50], or
faster computation of hash functions [48], [51], [36], [88].

Learning to hash, the interest in this survey, is a data-
dependent hashing approach, which aims to learn hash
functions from a specific dataset so that the nearest neighbor
search result in the hash coding space is as close to the
search result in the original space as possible, and the search
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cost and the space cost are also small. Since the pioneering
algorithm, spectral hashing [107], learning to hash has been
attracting a large amount of research interests in computer
vision and machine learning and has been applied to a wide-
range of applications such as large scale object retrieval [33],
image classification and detection [85] [94], and so on.

The main methodology of learning to hash is similarity
preserving, i.e., minimizing the gap between the similarities
or similarity orders computed/given in the original space
and in the hash coding space in various forms. The sim-
ilarity in the original space might be from the semantic
(class) information, or from the distance (e.g., Euclidean
distance) computed in the original space, which is more
widely interested and studied in most real applications, e.g.,
large scale search by image and image classification, and
thus the main focus in this paper.

This survey categorizes the algorithms according to the
similarity preserving manners into: pairwise similarity pre-
serving, multiwise similarity preserving, implicit similarity
preserving, and quantization that, we show, is a form of
pairwise similarity preserving, and discusses other prob-
lems, including evaluation datasets and schemes, online
search given the hash codes, and so on. In addition, we
present the empirical observation that the quantization ap-
proach outperforms other approaches and give some anal-
ysis about this observation. Finally, we point out the future
directions, such as an end-to-end learning strategy for real
applications, directly learning the hash codes from the ob-
ject, e.g., image, instead of first learning the representations
and then learning the hash codes from the representations.

1.1 Organization of This Paper

The organization of the remaining part is given as the
following. Section 2 introduces the exact and approximate
nearest neighbor search problems, and the search algorithms
with hashing. Section 3 provides the basic concepts in the
learning-to-hashing approach and categorizes the existing
algorithms from the perspective of loss function into four
main classes: pairwise alignment, multiple-wise alignment,
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implicit alignment and quantization, which are discussed in
Sections 4, 5, 6, and 7, respectively. Section 8 presents other
works in learning to hash. Sections 9 and 10 gives some
evaluation protocols and performance analysis. Finally, Sec-
tions 11 and 12 point out the future research trends and
conclude this survey, respectively.

2 BACKGROUND
2.1 Nearest Neighbor Search

Exact nearest neighbor search is defined as searching an
item NN(q) (called nearest neighbor) for a query N item g
from a set of items X = {x1,X2,--+ ,Xxn} so that NN(q) =
arg minye x dist(q, x), where dist(q,x) is a distance com-
puted between q and x. A straightforward generalization
is K-NN search, where K nearest neighbors (KNN(q)) are
needed to be found.

The distance between an arbitrary pair of items x and
q depends on the specific nearest search problem. A typical
example is that the search (reference) database X’ lies in a
d-dimensional space R? and the distance is induced by an [
norm, ||x — ql|s = (X%, |#; — ¢;|*)/*. The search problem
under the Euclidean distance, i.e., the [ norm, is widely
studied. Other notions of the search database, for example,
the data item is formed by a set, and distance measures, such
as /1 distance, cosine similarity and so on, are also possible.

There exist efficient algorithms (e.g., k-d trees and
its variants) for exact nearest neighbor search in low-
dimensional cases. In large scale high-dimensional cases, it
turns out that the problems become hard and most algo-
rithms even take higher computational cost than the naive
solution, linear scan. Therefore, a lot of recent efforts are
moved to search approximate nearest neighbors: (1 + €)-
approximate nearest neighbor search [29], which is studied
mainly in the theory community, and time-fixed approxi-
mate nearest neighbor search. Other nearest neighbor search
problems include (approximate) fixed-radius near neighbor
(R-near neighbor) problem, and randomized nearest neigh-
bor search which the locality sensitive hashing research
community is typical interested in.

Time-fixed approximate nearest neighbor search is stud-
ied mainly in machine learning and computer vision for real
applications, such as the learning to hash approach, though
there is usually lack of elegant theory. The goal is to make
the average search as accurate as possible by comparing the
returned K approximate nearest neighbors and the K exact
nearest neighbors, and the query cost as small as possible.

2.2 Search with Hashing

The hashing approach aims to map the reference (and
query) items to the target items so that approximate nearest
neighbor search is efficiently and accurately performed by
resorting to the target items and possibly a small subset of
the raw reference items. The target items are called hash
codes (also known as hash values, simply hashes). In this
paper, we may also call it short/compact codes interchange-
ably.

The hash function is formally defined as: y = h(x),
where y is the hash code, and may be a binary value, 1 and
0 (or —1) or an integer, and h(-) is the hash function. In the
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application to approximate nearest neighbor search, usually
several hash functions are used together to compute the
compound hash code: y = h(x), wherey = [y1 y2 - -+ yum]T
and h(x) = [h1(x) h2(x) -+ har(x)]7. Here we use a vector
y to represent the compound hash code for convenience.

There are two basic strategies for using hash codes to
perform nearest (near) neighbor search: hash table lookup
and hash code ranking. The search strategies are illustrated
in Figure 1.

The main idea of hash table lookup for accelerating the
search is to reduce the number of the distance computations
from N to N’ (N > N’), and thus the time complexity
is reduced from O(Nd) to O(N’d). The data structure,
called hash table (a form of inverted index), is composed
of buckets with each indexed by a hash code. Each reference
item x is placed into a bucket h(x). Different from the
conventional hashing algorithm in computer science that
avoids collisions (i.e., avoids mapping two items into some
same bucket), the hashing approach using a hash table aims
to maximize the probability of collision of near items. Given
the query q, the items lying in the bucket h(q) are retrieved
as the candidates of the nearest items of q, usually followed
by a reranking step: rerank the retrieved nearest neighbor
candidates according to the true distances computed using
the original features and attain the K nearest neighbors or
R-near neighbors

To improve the recall, two ways are often adopted.
The first way is to visit a few more buckets (but with a
single hash table), whose corresponding hash codes are the
nearest to (the hash code of) the query h(q) in terms of
the distances in the coding space. The second way is to
construct more hash tables. The items lying in the L hash
buckets h;(q),--- ,hr(q) are retrieved as the candidates of
near items of q. To guarantee the high precision, each of the
L hash codes, y;, needs to be a long code. This means that
the total number of the buckets is too large to index directly,
and thus, the buckets that are nonempty are retained by
using conventional hashing of the hash codes h;(x).

The second way essentially stores multiple copies of the
id for each reference item. Consequently, the space cost is
larger. In contrast, the space cost for the first way is smaller
as it only uses a single table and stores one copy of the id for
each reference item, but it needs to access more buckets to
guarantee the same recall with the second way. The multiple
assignment scheme is also studied: construct a single table,
but assign a reference item to multiple hash buckets. In
essence, it is shown that the second way, multiple hash
tables, can be regarded as a form of multiple assignment.

Hash code ranking performs an exhaustive search: com-
pare the query with each reference item by fast evaluating
their distance (e.g., using distance table lookup or using
the function __popcnt for Hamming distance) according
to (the hash code of) the query and the hash code of the
reference item, and retrieve the reference items with the
smallest distances as the candidates of nearest neighbors.
Usually this is followed by a reranking step: rerank the
retrieved nearest neighbor candidates according to the true
distances computed using the original features and attain
the K nearest neighbors or R-near neighbors.

This strategy exploits one main advantage of hash codes:
the distance using hash codes is efficiently computed and
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Fig. 1. lllustrating the search strategies. (a) Multi table lookup: the list corresponding to the hash code of the query in each table is retrieved. (b)
Single table lookup: the lists corresponding to and near to the hash code of the query are retrieved. (c) Hash code ranking: compare the query with
each reference item in the coding space. (d) Non exhaustive search: hash table lookup (or other inverted index struture) retrieves the candidates,
followed by hash code ranking over the candidates. The hash codes are different in two stages.

the cost is much smaller than that of the computation in the
original input space, reduced from d to d’ where d > d’ and
the whole cost is reduced from Nd to Nd'.

Comments: Hash table lookup is mainly used in locality
sensitive hashing, and has been used for evaluating learning
to hash in a few publications. It is observed that hash table
lookup with binary hash codes shows inferior performance
and hence rarely adopted in reality, while hash table lookup
with quantization-based hash codes, is widely used in the
non-exhaustive strategy to retrieve coarse candidates. In
comparison to hash table lookup, hash code ranking is su-
perior in search accuracy while inferior in search efficiency,
and overall performs better, and thus more widely used in
real applications and in experimental evaluations.

A practical way is to do a non-exhaustive search: first
retrieve a small set of candidates using inverted index, and
then compute the distances of the query with the candi-
dates using the hash codes, providing the top candidates
subsequently reranked using the original features. Other
research efforts include organizing the hash codes to avoid
exhaustive search with a data structure, such as a tree or a
graph structure [73].

3 LEARNING TO HASH

Learning to hash is a task of learning a (compound) hash
function, y = h(x), mapping an input item x to a compact

code y, with the goals: the nearest neighbor search result for
a query q is as close to the true nearest search result as pos-
sible and the search in the coding space is also efficient. A
learning-to-hash approach needs to consider three problems
for computing the hash codes: what hash function h(x) is
adopted, what similarity in the coding space is used and
what similarity is provided in the input space, what loss
function is chosen for the optimization objective.

3.1 Hash Function

The hash function can be a form based on linear projec-
tion, kernels, spherical function, neural network, a non-
parametric function, and so on. One popular hash function
is the linear hash function:

y = h(x) = sgn(w’x +b), )

where sgn(z) = 1if z > 0 and sgn(z) = 0 (or equivalently
—1) otherwise, w is the projection vector, and b is the bias
variable. The kernel function,

T
y=h(x)= sgn(z wK (s, x) +b), (2)
t=1

is also adopted in some approaches, where {s;} is a set
of representative samples that are randomly drawn from
the dataset or cluster centers of the dataset. and {w;} are



JOURNAL OF IATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

the weights. The non-parametric function based on nearest
vector assignment is widely used for quantization-based
solutions:

=ar min X—c 3
y=arg,_min _[x— el ©
where {c1, - ,ck} is a set of centers computed by some

algorithm, e.g., K-means and y € Z is an integer. In contrast
to other hashing algorithms in which the distance, e.g.,
Hamming distance, is often directly computed from hash
codes, the hash codes generated from the nearest vector
assignment-based hash function are the indices of the near-
est vectors, and the distance is computed using the centers
corresponding to the hash codes.

Hash functions are an important factor influencing the
search accuracy using the hash codes, as well as the time
cost of computing hash codes. A linear function is efficiently
evaluated, while the kernel function and the nearest vector
assignment based function leads to better search accuracy as
they are more flexible. Almost all the methods using a linear
hash function can be extended to kernelized hash functions.
Thus we do not use hash functions to categorize the hash
algorithms.

There are various algorithms developed and exploited to
optimize the hash function parameters. We summarize the
common ways to handle the sgn function which is a main
factor leading to the difficulty of estimating the parameters
(e.g., the projection vector w in the linear hash function).
There are roughly three approximation estimation schemes.
The first one is a continuous relaxation, e.g., sigmoid relax-
ation sgn(z) & ¢, (2) = IJFE%QZ The second one is directly
dropping the sign function sgn(z) ~ z. The third one is a
two-step scheme [53], [54] with its extension to iterative two
step optimization [17]: optimizing the binary codes without
considering the hash function, followed by estimating the
function parameters from the optimized hash codes.

3.2 Similarity

In the input space the distance df; between any pair of items
(x4,%;) could be a Euclidean distance, ||x; — x,||2 or other
metric distances. The similarity is often defined as a function

about the distance d: s?; = g(df;), and a typical function is

0 \2

the Gaussian function: s, = g(df;) = exp (—%) There
may be other similarity forms, such as the cosine similarity
m and so on. Besides, the semantic similarity is
also used for semantic similarity search. In this case, the
similarity sf; is usually binary, valued 1 if the two items
x; and x; belong to the same semantic class, 0 (or —1)
otherwise. The hashing algorithms for semantic similarity
usually can be applied to other distances, such as Euclidean
distance, by defining a pseudo-semantic similarity: s7; = 1
for nearby points (i, j) and s7; = 0 (or —1) for farther points
(ir ).

In the hash coding space, the typical distance dfj be-
tween y; and y; is the Hamming distance. It is defined as
the number of bits where the values are not the same and
mathematically formed as

M
d?j = Z 6[Yim # Yjml,

m=1

4

which is equivalent to d}; = |ly; — y;ll1 if the code is
valued by 1 and 0. The distance for the codes valued by
1 and —1 is similarly defined. The similarity based on the
Hamming distance is defined as s}; = M — d;; for the codes
valued by 1 and 0, meaning the number of bits where the
values are not the same. The inner product s?; = y]y; is
used as the similarity for the codes valued by 1 and —1.
These measures are also extended to the weighted case: e.g.,
d?j = Z%:I AmOYim # Yjm] and sfj = yl'Ay; where
A = Diag(A1, A2, -+, An) is a diagonal matrix and each
diagonal entry is the weight of the corresponding hash code.

Besides the Hamming distance/simialrity and its vari-
ants, the Euclidean distance is used, typically in quantiza-
tion approaches, and evaluated between the vectors corre-

sponding to the hash codes, d}; = ||c,, — ¢, ||2 (symmetric
distance) or between the query q and the center that is the
approximate to x; d}; = ||q — ¢, ||2 (asymmetric distance,

which is preferred as the accuracy is higher and the time
cost is almost the same), which is efficiently evaluated in
the search stage by using a distance lookup table. There are
also some works learning/optimizing the distances between
hash codes after the hash codes are already computed.

3.3 Loss Function

The basic rule of designing the loss function is to preserve
the similarity order, i.e., minimize the gap between the
approximate nearest neighbor search result computed from
the hash codes and the true search result obtained from the
input space.

The widely-used solution is pairwise similarity preserv-
ing, making the distances or similarities between a pair
of items from the input and coding spaces as consistent
as possible. The multiwise similarity preserving solution,
making the order among multiple items computed from the
input and coding spaces as consistent as possible, is also
studied. One class of solutions, e.g., spatial partitioning,
implicitly preserve the similarities. The quantization-based
solution aims to find the optimal approximation of the item
in terms of the distortion error, and we will show that it is
a way of preserving the pairwise similarities. Besides simi-
larity preserving items, some approaches introduce bucket
balance or its approximate variants as extra constraints.

3.4 Categorization

Our survey categorizes the existing algorithms to various
classes: the pairwise similarity preserving class, the mul-
tiwise similarity preserving class, the implicit similarity
preserving class, as well as the quantization class, according
to how the loss function is formulated. We separate the
quantization class from the pairwise similarity preserving
class as they are very different in formulations though the
quantization class can be explained from the perspective
of pairwise similarity preserving. In the following descrip-
tions, we may call quantization as quantization-based hash-
ing and other algorithms in which a hash function generates
a binary value as binary code hashing. In addition, we will
also discuss other studies on learning to hash. The summary
of the representative algorithms is given in Table 1.
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TABLE 1
A summary of representative hashing algorithms with respect to similarity preserving functions, code balance, hash function and similarity in the
coding space. pres. = preserving, sim. = similarity. BB = bit balance, BU = bit uncorrelation, BMIM = bit mutual information minimization, BKB =

bucket balance. H =

Hamming distance, WH = weighted Hamming distance, C = Cosine, E = Euclidean distance.

Approach Similarity pres. | Code balance || Hash function || Code sim.
Spectral hashing [107] BB + BU Eigenfunction
ICA hashing [24] BB + BMIM Linear
Kernelized spectral hashing [25] BB + BU Kernel
Hashing with graphs [60] BB + BU Eigenfunction
Discrete graph hashing [58] 55; dfj BB + BU kernel H
Compressed hashing [56] BB Kernel
Self-taught hashing [115] BB + BU Linear
LDA hashing [92] BU Linear
- Minimal loss hashing [74] - Linear
patrwise Semi-supervised hashing [96], [97], [98] sy S BU Linear H
Topology preserving hashing [116] dy; df] + sf] dyy BU Linear H
Binary reconstructive embedding [45] (dg; — df]) - Kernel H
Supervised hashing with kernels [59] - Kernel
Bilinear hyperplane hashing [61] (50, — sh )2 - BiLinear H
Label-regularized maximum margin hashing [71] v i BB Kernel
Multi-dimensional spectral hashing [106] BI + BU Eigenfunction WH
Spec hashing [55] KL({57,}, {5);}) - H
Order preserving hashing [102] rank order BKB Linear H
multiwise Triplet Joss hashing [76] triplet Joss BU Linear + NN H
Listwise supervision hashing [99] triplet Toss BU Linear H
Isotropic hashing [43] ~|x—yl2 BU Linear H
Tterative quantization [20], [21] -
Harmonious hashing [110] x —y| BU Linear H
s Matrix hashing [18] yi2 -
quantization Angular quantization [19] - C
Product quantization (PQ) [32] -
Cartesian k-means [75] (Optimized PQ [16]) |x —yl2 - Nearest vector E
Composite quantization [117] -

4 PAIRWISE SIMILARITY PRESERVING

The algorithms preserving the distances or similarities of a
pair of items computed from the input space and the Ham-
ming coding space are roughly divided as the following
groups:

. Similarity—distance product minimization (SDPM):
min ) iee s2;d}%;. The distance in the coding space
is expected to be smaller if the similarity in the
original space is larger. Here £ is a set of pairs of
items that are considered.

o Similarity-similarity product maximization (SSPM):
max ) ; iee s¢;s;. The similarity in the coding
space is expected to be larger if the similarity in the
original space is larger.

o Distance-distance product maximization (DDPM):
max ) ; »ee dy; dlj The distance in the coding space
is expected to be larger if the distance in the original
space is larger.

. Distance-similarity product minimization (DSPM):
min - iee dg;sl;. The similarity in the coding
space is expected to be smaller if the distance in the
original space is larger.

o Similarity-similarity difference minimization (SSDM:
min - ; ee(sy; — s1%)?. The difference between the
similarities is expected to be as small as possible.

o Distance-distance difference minimization (DDDM):
min - ee(dy; — dfj)Q. The difference between the
distances is expected to be as small as possible.

e Normalized similarity-similarity divergence mini-
mization (NSSDM):

min KL({Efj}, {EZ}) =

Here s -
Z(ﬂ jhee S

min(— > ; jee 55108 EZ)

The following reviews these groups of algorithms ex-
cept the distance-similarity product minimization group to
which we are not aware of any algorithms belonging. We
also point out the relation between similarity-distance prod-
uct minimization and similarity-similarity product mini-
mization, the relation between similarity-similarity prod-
uct minimization and similarity-similarity difference mini-
mization, as well as the relation between distance-distance
product minimization and distance-distance difference min-
imization

4.1 Similarity-Distance Product Minimization

We first introduce spectral hashing and its extensions and
then review the other forms.

4.1.1 Spectral Hashing

The goal of spectral hashing [107] is to minimize
min} . seg s”d”, where the Euclidean distance in the
hashing space, d? = |ly; — y;||3, is used for formulation
simplicity and 0pt1mlzat10n convenience, and the 51m11ar1ty
in the input space is defined as: 59, = exp (— W)
Note that the Hamming distance in the search stage can be
still used for higher efficiency as the Euclidean distance and
the Hamming distance in the coding space are consistent:
the larger the Euclidean distance and the larger Hamming
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distance. The objective function can be written in a matrix

form,
min E

(1,7)€€

where Y = [y1 y2---yn] is a matrix of M x N,
S = [s{jlnxn is the similarity matrix, and D =
Diag(ds1,- -+ ,dnn) is a diagonal matrix, d,,, = Zf\il 82,

There is a trivial solution to the problem (4): y; =
y2 = --- = yn. To avoid it, the code balance condition
is introduced: the number of data items mapped to each
hash code is the same. Bit balance and bit uncorrelation
are used to approximate the code balance condition. Bit
balance means that each bit has a around 50% chance of
being 1 or —1. Bit uncorrelation means that different bits are
uncorrelated. The two conditions are formulated as,

Y1=0, YY'=1, )

s2.d" = trace(Y(D — S)Y7T), 4)

1jig

where 1 is an N-dimensional all-1 vector, and I is an identity
matrix of size V.

Under the assumption of separate multi-dimensional
uniform data distribution, the hashing algorithm is given
as follows,

1) Find the principal components of the N d-
dimensional reference data items using principal
component analysis (PCA).

2) Compute the M one-dimensional Laplacian eigen-
functions with the M smallest eigenvalues along
each PCA direction (d directions in total).

3) Pick the M eigenfunctions with the smallest eigen-
values among M d eigenfunctions.

4) Threshold the eigenfunction at zero, obtaining the
binary codes.

The one-dimensional Laplacian eigenfunction for the
case of uniform distribution on [ry, r,] is ¢, () = sin(F +

—"-z), and the corresponding eigenvalue is \,, = 1 —
s L 2
exp (— 5|77 |?), where m = 1,2,--- is the frequency

and ¢ is a fixed small value. The hash function is formally
written as h(x) = sgn(sin(§ + yw’x)), where v depends
on the frequency m and the range of the projection along
the direction w.

Analysis: In the case that the spreads along the top
M PCA directions are the same, the hashing algorithm
partitions each direction into two parts using the median
(due to the bit balance requirement) as the threshold, which
is equivalent to thresholding at the mean value under the
assumption of uniform data distributions. In the case that
the true data distribution is a multi-dimensional isotropic
Gaussian distribution, the algorithm is equivalent to two
quantization algorithms: iterative quantization [21], [20],
and isotropic hashing [43].

Regarding the performance, it is good for a short hash
code but poor for a long hash code. The reason includes
three aspects. First, the assumption that the data follows a
uniform distribution does not hold in real cases. Second,
the eigenvalue monotonously decreases with respect to
| 7-2-|?, which means that the PCA direction with a large
spread (|, — 7|) and a lower frequency (m) is preferred.
Hence there might be more than one eigenfunctions picked
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along a single PCA direction, which breaks the uncor-
relation requirement. Last, thresholding the eigenfunction
¢m(z) = sin(§ + 7-x) at zero leads to that near points
may be mapped to different hash values and even far points
may be mapped to the same hash value. As a result, the
Hamming distance is not well consistent to the distance in

the input space.

Extensions: ICA hashing [24] studies code balance in

spectral hashing and formulates it as maximizing the en-
M

tropy Entropy(y1,y2,---,ynm) = 3,y Entropy(ym) —
I(y1,y2, -+ ,ym). It is subsequently formulated as bit
balance: E(y,,) = 0 (where Entropy(y,,) is max-
imized as 1) and mutual information minimization,
I(y1,y2, -+ ,ym), which is related to I(y1,y2, - ,ym) =
I(w¥x,wlx, - wlx) for the linear hash function y =
sgn(WTx — b) when using the scheme used in indepen-
dent component analysis. The overall formulation is to
minimize the approximate mutual information subject to
trace(Y (D — S)Y7T) < 7 and the bit balance constraint.

Kernelized spectral hashing [25] extends spectral hashing
using the kernel hash function. Hypergraph spectral hash-
ing [124], [64] extends spectral hashing from an ordinary
(pairwise) graph to a hypergraph (multiwise graph), and
formulates the problem using the hypergraph Laplacian.
Sparse spectral hashing [86] combines boosting similarity
sensitive hashing and sparse principal component analysis
under the original spectral hashing framework. Hashing with
graphs [60] uses the anchor graph to approximate the neigh-
borhood graph and accordingly uses the graph Laplacian
over the anchor graph to approximate the graph Laplacian
of the original graph for fast computing the eigenvectors
with a side contribution of exploiting a hierarchical hashing
to address the boundary issue. Its extension, discrete Graph
Hashing [58], provides a new optimization algorithm. Com-
pressed hashing [56] borrows the idea about anchor graph
in [60] and uses the anchors to generate a sparse represen-
tation.

Weighted hashing [105] extends spectral hashing by
adopting the weighted Hamming distance between hash
codes, ||@”(y; — y;)||3 and introducing an extra con-
straint: "‘(1 = 22 . - . —AaM__ where ¢ =

var yl%_' var(yz2) ] Vf“(yzw)

[crag - ap]t and var(-) is the variance operator. Self-
taught hashing [115] changes the constraints in the spectral
hashing to YDY? = I and YD1 = 0 and uses the linear
hash function, h(x) = sgn(wlx + b). Sparse hashing [122]
adds two parts into the objective function: the sparsity
constraint of the hash codes |y||1 and the reconstruction
constraint from the hash codes ||[x — PTy||3 and uses the
linear hash function, h(x) = sgn(w’x).

Other extensions include principal component hashing [65]
that also uses the principal direction to formulate the
hash function, spectral hashing with semantically consistent
graph [52] that constructs a semantically consistent graph by
learning a linear transformation matrix such that the similar-
ity computed over the transformed space is consistent to the
semantic similarity as well as the Euclidean distance-based
similarity, transform coding [4] that transforms the data using
PCA and then assigns several bits to each principal direction
using bit allocation to determine which principal direction
is used and how many bits are assigned to such a direction,
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and double-bit quantization that handles the third drawback
in spectral hashing by distributing two bits into each projec-
tion direction, conducting only 3-cluster quantization, and
assigning 01, 00, and 11 to each cluster.

4.1.2 Variants

Linear discriminant analysis (LDA) hashing [92] minimizes a
form of the loss function: mlnz (i.j)ee St d”, where dh =
lly: — y;l|3. Different from spectral hashing, (1) s¢. = 1 if
data items x; and x; are a similar pair, (i,j) € €T, ahd s8¢ =
—1 if data items x; and x; are a dissimilar pair, (4, j) € P
(2) a linear hash function is used: y = sgn(W?¥x + b), and
(3) a weight « is imposed to Sw dZ for the similar pair. As a
result, the objective function is written as:

a > yi-yilz— > llyi—vil5  ©)
(i,5)€ET (i,5)€€E~

The projection matrix W and the threshold b are sepa-

rately optimized: (1) drop the sgn function in Equation (6),

leading an eigenvalue decomposition problem, to estimate

an orthogonal matrix W; (2) estimate b by minimizing

Equation (6) with fixing W through a simple 1D search
scheme.

The loss function in minimal loss hashing [74] is in the

formof min ) ; jyce 57 d . Similar to LDA hashing, s7; = 1
if (1,j) € € and s, = —1if (i,5) € £ D1fferently,
the distance is hinge—like: dly = max(|ly; — }’jH1 +1,p)

for (i,j) € £ and d; = min(|ly; — y;lli — 1,p) for
(i,7) € €. The intuition is that there is no penalty if the
Hamming distance for similar pairs is small enough and if
the Hamming distance for dissimilar pairs is large enough.
The formulation, if p is fixed, is equivalent to,

min Z max(||y; — YjHl -p+1,0)
(i,j)eE+
+ Z Amax(p — |ly; —y;lli +1,0), ()
(i,5)€€~

where p is a hyper-parameter used as a threshold in the
Hamming space to differentiate similar pairs from dissim-
ilar pairs, A is also a hyper-parameter that controls the
ratio of the slopes for the penalties incurred for similar
(or dissimilar) points. The hash function is in the linear
form: y = sgn(W7Tx). The projection matrix W is estimated
by transforming y = sgn(WTx) = argmaxy ey KT W7Tx
and optimizing using structured prediction with latent vari-
ables. The hyperparameters p and A are chosen via cross-
validation.

Comments: The main differences of the three repre-
sentative algorithms, spectral hashing, LDA hashing, and
minimal loss hashing, are twofold. First, the similarity in the
input space in spectral hashing is defined as a continuous
positive number computed from the Euclidean distance,
while they in LDA hashing and minimal loss hashing are
adopted 1 for a similar pair and —1 for a dissimilar pair.
Second, the distance in the hashing space for minimal loss
hashing is different from spectral hashing and LDA hashing.

4.2 Similarity-Similarity Product Maximization

Semi-supervised hashing [96], [97], [98] is the representa-
tive algorithm in this group. The objective function is

7

max ) ; iee S5 w The similarity s7; in the input space is
1 if the pair of items x; and x; belong to a same class or
are nearby points, and —1 otherwise. The similarity in the
coding space is defined as s}, = yy;. Thus, the objective
function is rewritten as maximizing;:

> soylys. ®)

(i,9)€€

The hash function is in a linear form y = h(x) =
sgn(WTx). Besides, the bit balance is also considered, and is
formulated as maximizing the variance, trace(Y'Y?'), rather
than letting the mean be 0, Y1 = 0. The overall objective is
to maximize

trace(YSY?) + ntrace(YYT), 9)

subject to WT'W = 1, which is a relaxation of the bit
uncorrelation condition. The estimation of W is done by
directly dropping the sgn operator.

An unsupervised extension is given in [98]: sequentially
compute the projection vector {w,,}M_; from w; to wys
by optimizing the problem 9. In particular, the first iteration
computes the PCA direction as the first w, and at each of
the later iterations, s7; = 1 if nearby points are mapped
to different hash values in the previous iterations, and
s7; = —1if far points are mapped to same hash values in the
previous iterations. An extension of semi-supervised hash-
ing to nonlinear hash functions is presented in [108] using
the kernel hash function. An iterative two-step optimization
using graph cuts is given in [17].

Comments: It is interesting that Z(i,j)eé‘ s‘i’jy;-fyj =
%Z jee Sillyi yills =
5 Z(” cesydl if y e {1,-1}M, where const
is a constant variable (and thus trace(YSY?) =
const — trace(Y(D — S)YT)). In this case, similarity-
similarity product maximization is equivalent to similarity-
distance product minimization.

const const —

4.3 Distance-Distance Product Maximization

The mathematical formulation of distance distance product
maximization is max_; i ce d” +;- Topology preserving
hashing [116] formulates the problem by starting with this
rule:

2 il =

where L;= D1ag{D01} —D°and D° = [dfj]NxN.
In addition, similarity-distance product minimization is
also considered:

Zd ly: — y;ll3 = trace(YLsYT),  (10)

Z SZJHyz — yJHg = trace(YLYT). (11)
(i,5)€€
The overall formulation is given as follows,
trace(Y (Lg +oI)YT) (12)

trace(YLYT) ’

where ol introduces a regularization term, trace(YY?),
maximizing the variances, which is the same to semi-
supervised hashing [96] for bit balance. The problem is
optimized by dropping the sgn operator in the hash function
y = sgn(W7x) and letting W XLXW be an identity
matrix.
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4.4 Distance-Distance Difference Minimization

Binary reconstructive embedding [45] belongs to this group:
min Y, 5y (d% — df;)?. The Buclidean distance is used in
both the input and codmg spaces. The objective function is
formulated as follows,

min ) —sz x5 — HYi_YJ'HS)Q- (13)
(i,5)€€
The kernel hash function is used:
Tm
Ynm = han (%) = 50D Wit K (S, X)), (14)
t=1

where {s,,:}1" are sampled data items, K(-,-) is a kernel
function, and {w;,} are the weights to be learnt.

Instead of relaxing or dropping the sgn function and us-
ing a two-step scheme, an alternative optimization scheme
is presented in [45]: fixing all but one weight w,,; and
optimizing the problem 13 with respect to w;,;. There is
an exact, optimal update to this weight w,,; (fixing all the
other weights) which is achieved with the time complexity
O(Nlog N + |€]).

Comments: We have the following equation,

min Z (d?; —dh (15)
(i,5)€€

=min Y ((d3;)* + (d}y)* — 2d;dl%) (16)
(i,5)€€

=min Y ((d})? —2d3dl). (17)
(i,9)€€

This shows that the difference between distance-distance
difference minimization and distance-distance product max-
imization lies on min} . jce (d?;)?, minimizing the dis-
tances between the data items in the hash space. This could
be regarded as a regularizer, complementary to distance-
distance product maximization max}; ;ce dg;df; which
tends to maximizing the distances between the data items
in the hash space.

4.5 Similarity-Similarity Difference Minimization
Similarity-similarity difference minimization is mathemat-
ically formulated as min}>; yee(sf; — sii)?. Supervised
hashing with kernels [59], one representative approach in this
group, aims to minimize an objective function,

min E

(i,5)€E

zj__yzy]) 9 (18)

where s¢; = 1if (i, j) is similar, and s¢; = —1 if dissimilar.
y = h(x) is a kernel hash function. Kernel reconstructive
hashing [112] extends this technique using a normalized
Gaussian kernel similarity.

Comments: We have the following equation,

min Z (7 — (19)
(i,5)€€

= min Z ((sfj)2 + (SZ)2 - 25%5%) (20)
(i,5)€€

= min Z ((sl — 2sY; sfj) (21)
(i,5)€€
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This shows that the difference between similarity-similarity
difference minimization and similarity-similarity product
maximization lies on min Z(i7j)eg(s?j)2, minimizing the
similarities between the data items in the hash space,
intuitively letting the hash codes as different as pos-
sible. This could be regarded as a regularizer com-
plementary to similarity-similarity product maximization
max Z(i jee S w, which has a trivial solution: the hash
codes are the same for all data points.

Extensions and variants: Bilinear hyperplane hashing [61]
extends the formulation of supervised hashing with kernels.
It uses the same objective function, and introduces two
differences: (1) a bilinear hyperplane hashing function,

if z is a hyperplane normal,

h(Z):{ i (22)

sgn(u’ zz' v
sgn(—uT'zz"v)
where the bilinear projection vectors u and v are the pa-
rameters of the hash functions; (2) a new definition for the
similarity in the input space,
1 if cos(Ox, x;) = t1
sg;=4 —1 if cos(Ox,; x;) < t2 ,
2| cos(fx;,x,;)| — 1 otherwise

where ¢; and ¢ are two thresholds. The problem is solved
by relaxing sgn with the sigmoid-shaped function and find-
ing the solution with the gradient descent algorithm.
Multi-dimensional spectral hashing [106] uses a similar
objective function, but with a weighted Hamming distance,

> (s —yiAy)?, (24)
(i,5)€E

if z is a database vector,

(23)

min

where A is a diagonal matrix. Both A and hash codes {y;}
are needed to be optimized. The algorithm for solving the
problem 24 to compute hash codes is similar to that given
in spectral hashing [107].

Label-regularized maximum margin hashing [71] computes
the hash function one by one, with the objective function
consisting of three components: the similarity-similarity dif-
ference, 3, iyee (8% —viy;)? (s € {—1,1}, 4 € {~1,1}),a
hinge loss from the hash function, max(0, 1 — y;(w'x + b)),
as well as the maximum margin part,

min w2+ A $% — yyi )2+ 25
{yi}7W;b7{5i}7{<ij} H H2 1 Z ( (%] yyj) ( )
(i,5)€€
N
A2 Z max(0,1 —y;(w'x +b)). (26)
j=1
A bit balance constraint is introduced, —! < wTx; +b < [

to encourage that half of data items are mapped to—1orl.

4.6 Normalized Similarity-Similarity Divergence Mini-
mization

Spec hashing [55], belonging to this group, views each pair
of data items as a sample and their (normalized) similarity
as the probability, and finds the hash functions so that
the probability distributions from the input space and the
coding space are well aligned. The objective function is
written as follows,

KL({5%},{s};}) = const — Z 57, log 7.

(i,5)€€

27)
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Here, 57; is the normalized similarity in the input space,
25 =1 E?j is the normalized similarity in the Hamming
space, Efj = %exp (—/\dfj), where Z is a normalization
variable Z =37, exp (—Ad}y).

Supervised binary hash code learning [13] presents a
supervised binary hash code learning algorithm based on
the Jensen Shannon divergence which is derived from mini-
mizing an upper bound of the probability of Bayes decision

errors.

5 MULTIWISE SIMILARITY PRESERVING

This section reviews the category of hashing algorithms that
formulate the loss function by maximizing the agreement of
the similarity orders over more than two items computed
from the input space and the coding space.

Order preserving hashing [102] aims to learn hash func-
tions through aligning the orders computed from the orig-
inal space and the ones in the coding space. Given a
data point x,, the database points X are divided into
M categories, (CI,,Cl,---,C",,), where C! . corresponds
to the items whose distance to the query is m, and
(C2y,C2,- -+ ,C2,), using the distances in the hashing
space and the distances in the input (original) space, respec-
tively. (C%,C%,- -+ ,C2,) is constructed such that in the
deal case the probability assigning an item to any hash code
is the same. The basic objective function maximizing the

alignment between the two categories is given as follows,

M
Z Z(|CZm_CZm| + |Cgm_CZm|)7

ne{l,... ,N} m=0

L(h(): X) =

(28)

where [|C2,, — CI | is the cardinality of the difference of
the two sets. The linear hash function h(x) is used and
dropping the sgn function is adopted for optimization.
Triplet loss hashing [76] formulates the hashing problem
by maximizing the similarity order agreement defined over
triplets of items, {(x, x™,x ™)}, where the pair (x,x ™) is less
similar than the pair (x,x"). The triplet loss is defined as

Ciplet(y, ¥y, y7) = max(1 = [ly =y~ 1 + [ly = y™[11,0).

(29)
The objective function is given as follows,
Z Ciplet(h(x), h(x 1), h(x7))
(e xF,x7)eD
+% trace (W? W), (30)

where h(x) = h(x; W) is the compound hash function.
The problem is optimized using the algorithm similar to
minimal loss hashing [74]. The extension to asymmetric
Hamming distance is also discussed in [76].

Listwise supervision hashing [99] also uses triplets of items.
The formulation is based on a triplet tensor S defined as
follows,

1 if s°(qi, x;) < s°(q, Xx)

sy = s(Qiixg, x) = ¢ =1 ifs%(qi, x;) > s%(qi, xx) -
0 if s°(qi, x;) = s°(q, Xx,)

(31)
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The objective is to maximize the triple-similarity and the
triple-similarity product:

h o
Z SijkSijk»

i,k

(32)

where s?jk is a ranking triplet computed by the binary
code using the cosine similarity, s/, = sgn(h(q;)"h(x;) —
h(q;)Th(xy)). Through dropping the sgn function, the ob-
jective function is transformed to

— > h(a)" (h(x;) — h(xx))s3x,

ijk

(33)

which is solved by dropping the sgn operator in the hash
function h(x) = sgn(W7x).

Comments: Order preserving hashing aims to consider
the relation between the search lists while triplet loss hash-
ing and listwise supervision hashing consider triplewise
relation. The central ideas of triplet loss hashing and listwise
supervision hashing are very similar, and their difference lie
in how to formulate the loss function.

6 IMPLICIT SIMILARITY PRESERVING

We review the category of hashing algorithms that focus
on pursuing effective space partitioning without explicitly
evaluating the relation between the distances/similarities
in the input and coding spaces. The common idea is to
partition the space, formulated as a classification problem,
with the maximum margin criterion or the code balance
condition.

Random maximum margin hashing [41] learns a hash func-
tion with the maximum margin criterion. The point is that
the positive and negative labels are randomly generated, by
randomly sampling N data items and randomly labeling
half of the items with —1 and the other half with 1. The for-
mulation is a standard SVM formulation that is equivalent
to the following form,

max min{ min (w'x} +b), min (-w'x; —b)},

K N . N
=1, 5 =1, 5

.
w2
(34)

where {x;} are the positive samples and {x; } are the
negative samples.

Complementary projection hashing [40], similar to comple-
mentary hashing [111], finds the hash function such that
the items are as far away as possible from the partition
plane corresponding to the hash function. It is formulated
as H(e — [wx + b|), where H(-) = 2(1 + sgn(-)) is the unit
step function. Moreover, the bit balance condition, Y1 = 0,
and the bit uncorrelation condition, the non-diagonal entries
in YY are 0, are considered. An extension is also given by
using the kernel hash function. In addition, in learning the
mth hash function, the data item is weighted by a variable,
computed from the previously-learnt hash function, accord-
ing to the previously computed (m — 1) hash functions:
um =1+ 30 He — [whx +by]).

Spherical hashing [26] uses a hypersphere to partition the
space. The spherical hash function is defined as h(x) = 1 if
d(p,x) < t and h(x) = 0 otherwise. The compound hash
function consists of M spherical functions, depending on
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M pivots {p1,--- ,pm} and M thresholds {t1, - ,tar}.
The similarity in the coding space is defined based on the
distance: M . Unlike the pairwise and multiwise sim-
ilarity preservmg algorithms, there is no explicit function
penalizing the disagreement of the similarities computed
in the input and coding spaces. The M pivots and thresh-
olds are learnt such that it satisfies a pairwise bit balance
condition: |{x | hm(x) = 1} = {x | hm(x) = 0}|, and
[{x | hi(x) = b1, hj(x) = ba}| = 3| X[, 01,02 € {0, 1},4 # j.

7 QUANTIZATION

We show that the quantization approach can be derived
from the perspective of distance-distance difference mini-
mization. Considering two points x; and x; and its approx-
imation z; and z;, we have

|dg; — dl| (35)

= [[xi = %2 — |z — 22 (36)

= llxi = xjl2 = [xi = 25]2 + x5 — z5]2 — [2: —zj|2|  (37)

< = xjl2 = [xi — zjl2| + ||xi — 25]2 — |z — 25[2| (38)

S |Xj — Zj|2 + |Xi — Zi|2. (39)
Thus, [df; — df|* < (|x; — 2[5 + |xi — z]3), and

min Y [dy —dl? (40)

i,j€{1,2,-- ,\N}

>

i,j€{1,2,-- ,\N}

>

i€{1,2,,N}

< min (I — 2505 + [xi — z]3) (1)

= min2 Ix; — z|3. (42)

This means that the distance-distance difference minimiza-
tion rule is transformed to minimizing its upper-bound, the
quantization error, which is described as a theorem below.

Theorem 1. The distortion error in the quantization approach
is an upper bound (with a scale) of the differences
between the pairwise distances computed from the input
features and from the approximate representation.

The quantization approach for hashing is roughly di-
vided into two main groups: hypercubic quantization, in
which the approximation z is equal to the hash code y,
and Cartesian quantization, in which the approximation z
corresponds to a vector formed by the hash code y, e.g., y
represents the index of a set of candidate approximations.

7.1 Hypercubic Quantization

Hypercubic quantization refers to a category of algorithms
that quantize a data item to a vertex in a hypercubic, i.e., a
vector belonging to a set {[y1 y2 - ym|” | ym € {-1,1}}
or the rotated hypercubic vertices. The well-known scalar
quantization, the simplest hypercubic quantization, can be
derived by minimizing |x; — y;|3 subject to y; € {1,—1}.
The local digit coding approach [44] also belongs to this
category.
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7.1.1 lterative quantization

Iterative quantization [20], [21] preprocesses the data, by
reducing the dimension using PCA to M dimensions,

= PTx, where P is a matrix of size d x M (M < d)
computed using PCA, and then finds an optimal rotation R
followed by a scalar quantization. The formulation is given
as,

min [[Y - R"V|%, (43)

where R is a matrix of M x M, V = [vivy---
Y =[yiy2---yn]-

The problem is solved via alternative optimization.
There are two alternative steps. Fixing R, Y = sign(RTV).
Fixing B, the problem becomes the classic orthogonal Pro-
crustes problem, and the solution is R = SST, where S and
S is obtained from the SVD of YV7, YV = SAST.

Comments: We present an integrated objective func-
tion that is able to explain the necessity of PCA dimen-
sion reduction. Let y be a d-dimensional vector, which is
a concatenated vector from y and an all-zero subvector:
¥ = [y70...0]7. The integrated objective function is written
as follows:

vy] and

min Y — R"X||%, (44)
where Y = [y1¥2---yn] X = [x1X2---Xp), and Risa
rotation matrix of d x d. Let P be the projection matrix
of d x d, computed using PCA, P = [PP ], and P is a
matrix of d x (d — M). It can be seen that, the solutions

for y of the two problems in 44 and 43 are the same, and
R = P Diag(R, I(q—ar)x(d—n))-

7.1.2 Extensions and Variants

Harmonious hashing [110] modifies iterative quantization
by adding an extra constraint: YY? = oL. The problem
is solved by relaxing Y to continuous values: fixing R,
let RTV = UAVT, then Y = ¢'/2UV7; fixing Y,
R = SST, whpre S and S is obtained from the SVD of YVT,
YV? = SAST. The hash function is finally computed as
y = sgn(RTv).

Isotropic hashing [43] finds a rotation following a PCA
preprocessing such that RTVVTR = X becomes a matrix
with equal diagonal values, ie., [X];; = [X]o2 = -+ =
[2]araz- The objective function is written as |[RTVVTR —
Z||r = 0, where Z is a matrix with all the diagonal entries
equal to an unknown variable o. The problem can be solved
by two algorithms: lift and projection and gradient flow.

Comments: The goal of making the variances along the
M directions same is to make the bits in the hash codes
equally contributed to the distance evaluation. In the case
that the data items satisfy the isotropic Gaussian distribu-
tion, the solution from isotropic hashing is equivalent to
iterative quantization.

Similar to iterative quantization, the PCA preprocessing
in isotropic hashing is also interpretable: finding a global
rotation matrix R such that the first M diagonal entries
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of ¥ = RTXXTR are equal, and their sum is as large as
possible, which is formally written as follows,

M
max Z (2] mm (45)
m=1
sit. [Blpm=0,m=1,--- M, (46)
R'R = (47)

Locally linear hashing [30] replaces the PCA preprocess
in iterative quantization using locally linear embedding.
In particular, the locally linear embedding and the rota-
tion matrix are jointly optimized. The objective function is
given as ming r v trace(Z'MZ) + n||Y — ZR||% subject
toY € {1,-1}*M RTR = 1. Here Z is a nonlinear
embedding similar to locally linear embedding and M is a
sparse matrix, M = (I-W)T (I-W). W is the locally linear
reconstruction weight matrix. The hash function for an out-
of-sample q is y, = sign(YZw,), where w, is a locally
linear reconstruction weight, and Y corresponds to the hash
codes of the cluster centers, computed using k-means, of the
database X. Locality preserving hashing [120] jointly optimizes
the locality preserving projection and the quantization in
the projection space: trace{ WX XTLXW} +p||Y — XW|%
with L being the graph Laplacian matrix for matrix.

Angular quantization [19], a variant iterative quan-
tization, addresses the ANN search problem under
the cosine similarity. The objective function of finding
the binary codes, similar to iterative quantization, is

T T
maxg (y.} Son_ ﬁ@ﬁ subject to y, € {0,1}¥
and RTR = I The hash code is computed by using the
nearest vertex from the vertices of the binary hypercube
{0,1}? to approximate the data vector x, argmaxy ﬁ,

subject to y € {0,1}*, which is shown to be solved in
O(M log M) time. The similarity in the Hamming space is
computed by 7“5,;"5 s

Matrix Hashing [18] aims to hash a matrix X to short
codes using a bilinear projection algorithm. The (com-
pound) hash function is defined as vec(sign(RY XR..)),
where X is a matrix of d; x d,,, R; of size d; x d; and
R, of size d, x d, are two orthogonal matrices. The ob-
jective is to minimize the angle between the rotated feature
vec(RFXR,) and its binary encoding B € {—1, +1}4>dr:
Maxg, R, {B,} SN | trace(B,RTXTR;). where B, =
sign(RfX,R,), The problem is optimized by alternat-
ing between {B,}, R; and R,. One comment is that
Maxg, R, {B,} 21]:[:1 trace(B,RIXIR,) is equivalent to
ming, r, {(B,} SN B, — RTXTRy||, which is also a
quantization form like iterative quantization.

7.2 Cartesian Quantization

Cartesian quantization refers to a class of quantiza-
tion algorithms in which the composed dictionary C
is formed from a Cartesian product of a set of small
source dictionaries {C1,Co,---,Cp}: C = (1 X Ca2 X

x Cp = {(c14,€2,, - ,CpPip)}, where C, =
{epos ep2, - i,y b ip € 0,1, K, — 1}

The benefits include (1) that P small dictionaries,
with totally 25:1 K, dictionary items, generate a larger

dictionary with H;):l K, dictionary items, (2) that the
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(asymmetric) distance from a query q to the com-
posed dictionary item (cyi;,C2iy, " ,Cpip) (an approxi-
mation of a data item) is computed from the distances
{dist(q, c14, ), - - ,dist(q, cpi,)} through a sum operation,
thus the cost of the distance computation between a query
and a data item, is O(P) if the distances between the query
and the source dictionary items are precomputed, and (3)
that the query cost with a set of N database items is reduced
from Nd to NP through looking up a distance table which
is efficiently computed between the query and the P source
dictionaries.

7.2.1 Product Quantization

Product quantization [32] forms the P source dictionaries
by dividing the feature space into (P) disjoint subspaces,
accordingly dividing the database into P sets, each set con-
sisting of N subvectors {Xp1,--- ,Xpn}, and then quantiz-
ing each subspace separately into (usually K1 = Ky = -+ =
Kp = K) clusters. Let {cp1,Cp2, - ,Cpi } be the cluster
centers of the pth subspace. The operation forming an item
in the dictionary from a P-tuple (c1;,, €2i,,- - , Cpip) is the
concatenation [c{; ¢J;, -~ ¢p,,]7. A data point assigned to
the nearest dictionary item (ci14,,C2iy,- - ,Cpip) iS repre-
sented by a compact code (31,142, - ,ip), whose length is
log, K. The distance dist(q, cp;,) between a query q and
the dictionary element in the pth dictionary is computed as
lap — cpi, |13, Where qj, is the subvector of q corresponding
to the pth subspace.

Mathematically, product quantization can be viewed as
minimizing the following objective function,

N
Z lIxn — Cbn”%-

min 48
Jny 3 (48)
Here C is a matrix of d x PK in the form of
cC;, 0 --- 0
0 C, --- 0
C:diag(Cl,Cg,w-,Cp): . . . . y

0 0 Cp

(49)

where C, = [cp1Cp2 -+ - Cpic). by, = [bL BT, - BT )T is the
composition vector, and its subvector by, of length K is an
indicator vector with only one entry being 1 and all others
being 0, showing which element is selected from the pth
source dictionary for quantization.

Extensions: Distance-encoded product quantization [27] ex-
tends product quantization by encoding both the cluster
index and the distance between the cluster center and the
point. The cluster index is encoded in a way similar to that
in product quantization. The way of encoding the distance
between a point and its cluster center is given as: the points
belonging to one cluster, are partitioned (quantized) accord-
ing to the distances to the cluster center, the points in each
partition are represented by the corresponding partition
index, and accordingly the distances of each partition to the
cluster center are also recorded associated with the partition
index.
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Cartesian k-means [75] and optimized production quanti-
zation [16] extends product quantization and introduces a
rotation R into the objective function,

N
min } > IR"x, — Chyf3. (50)

R,C,{b =

The introduced rotation does not affect the Euclidean dis-
tance as the Euclidean distance is invariant to the rotation,
and helps to find an optimized subspace partition for quan-
tization. Locally optimized product quantization [42] applies
optimized production quantization to the search algorithm
with the inverted index, where there is a quantizer for each
inverted list.

7.2.2 Composite Quantization

In composite quantization [117] the operation forming an
item in the dictionary from a P-tuple (c14,,C2iy, " ,CPip)
is the summation 211;1 Cpi,- In order to compute the
distance from a query q to the composed dictionary
item formed from (cy;,,Coi,, - ,Cpip) from the distances
{dist(q, ¢14, ), - - - ,dist(q, c14, )}, a constraint is introduced:
the summation of the inner products of all pairs of elements
that are used to apgroximate the vector x,, but from differ-
ent dictionaries, ) | =1 le,#i Cik,, Cjk,, , 1S constant.
The problem is formulated as
min 3" [k, — [C1C- - Cplby 2
{Cphdba}e “=n=1 " e

P P T T e
5. t. Zj:l Zi:l,i;&j bl.CICib,; =¢,
by, = [b£1b£2 o -bfp]T,
b, € {07 1}Ka ”bnp”l =1,
n=12---,N;p=1,2,---P.

(1)

Here, C, is a matrix of size d x K, and each column
corresponds to an element of the pth dictionary C,,.

Sparse composite quantization [118] improves com-
posite quantization by constructing a sparse dictionaries,
25:1 Zszl lepllo < S, with S being a parameter con-
trolling the sparsity degree, with a great reduction of the
distance table computation cost and can take almost the
same to the most efficient approach: product quantization.

Connection with product quantization: It is shown
in [117] that both product quantization and Cartesian k-
means can be regarded as constrained versions of composite
quantization. Composite quantization attains smaller quan-
tization errors, yielding a better search accuracy with similar
search efficiency. A 2D illustration of the three algorithms
is given in Figure 2, where 2D points are grouped into 9
groups. It is observed that composition quantization is more
flexible in partitioning the space and thus the quantization
error is possibly small.

Composite quantization, product quantization, Carte-
sian k-means (optimized product quantization) can be ex-
plained from the perspective of sparse coding, as pointed
in [117]: the dictionary ({C,}) in composite quantization
(product quantization and Cartesian k-means) satisfies the
constant (orthogonality) constraint, and the sparse codes
({b,,}) are 0 and 1 vectors where there is only one 1 for
each subvector corresponding to a source dictionary.
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Comments: The idea of using the summation of sev-
eral dictionary items as an approximation of a data item
has already been studied in the signal processing research
area, known as multi-stage vector quantization, residual
quantization, or more generally structured vector quantiza-
tion [23], and recently re-developed for similarity search un-
der the Euclidean distance (additive quantization [1], [101],
and tree quantization [2] modifying additive quantization,
by introducing a tree-structure sparsity) and inner prod-
uct [12].

7.2.3 \Variants

The work in [22] presents an approach to compute the
source dictionaries given the M hash functions {h,,(x) =
b, (gm (%))}, where g.,() is a real-valued embedding func-
tion and b, () is a binarization function, for a better distance
measure, quantization-like distance, instead of Hamming or
weighted Hamming distance. It computes M dictionaries,
each corresponding to a hash bit and computed as

Gy = E(gr(x) | bi(gr(x)) = b), (52)

where b = 0 and b = 1. The computation cost is O(M)
through looking up a distance table, which can be accel-
erated by dividing the hash functions into groups (e.g.,
each group contains 8 functions) and building a table (e.g.,
consisting of 256 entries) per group instead of per hash
function and forming a larger distance lookup table. In
contrast, optimized code ranking [100] directly estimates the
distance table rather than computing it from the estimated
dictionary.

Composite quantization [117] points the relation be-
tween Cartesian quantization and sparse coding. This in-
dicates the application of sparse coding to similarity search.
Compact sparse coding [8], the extension of the early work ro-
bust sparse coding [9], adopts sparse codes to represent the
database items: the atom indices corresponding to nonzero
codes, which is equivalent to letting the hash bits associated
with nonzero codes be 1 and 0 for zero codes, are used to
build the inverted index, and the nonzero coefficients are
used to reconstruct the database items and calculate the
approximate distances between the database items and the
query. Anti-sparse coding [34] aims to learn a hash code so
that non-zero elements in the hash code are as many as possible.

Quantization can be viewed as a reconstruction ap-
proach for a data item. Semantic hashing [83], [84] generates
the hash codes using the deep generative model, for recon-
structing the data item. As a result, the binary codes are
used for finding similar data.

8 OTHER ToPICS

In this section, we review the works that handle other
issues besides designing the loss function for hash function
optimization.

8.1 Active and Online Hashing

Most hashing learning algorithms assume the similarity
information in the input space, especially the semantic simi-
larity information, and the database items have already been
given. There are some approaches learning hash functions
without such assumptions.
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Fig. 2. 2D toy examples illustrating the quantization algorithms. The space partitioning results are generated by (a) product quantization, (b)
Cartesian k-means, and (c) composite quantization. The space partition from composition quantization is more flexible.

Active hashing [121] starts with a small set of pairs of
points with labeling information and learns hash func-
tions by actively selecting the labeled pairs that are most
informative. Online hashing [28] presents an algorithm to
learn the hash functions when the similar/dissimilar pairs
come sequentially rather than at the beginning all the simi-
lar/dissimilar pairs come together. Smart hashing [113] also
addresses the problem when the similar/dissimilar pairs
come sequentially. Unlike the online hash algorithm that
updates all hash functions, smart hashing only selects a
small subset of hash functions for relearning for a fast
response to newly-coming labeled pairs.

8.2 Manifold Hashing

The manifold structure in the database is exploited for
hashing, which is helpful for semantic similarity search.
Locally linear hashing [30] combines the manifold learning
approach, linearly linear embedding and iterative quan-
tization. Spline regression hashing [65] is aimed at discov-
ering a global hash function in a kernel form, such that
the hash value from the global hash function is consistent
to those from the local hash functions that correspond
to its neighborhood points. Inductive manifold hashing [87]
clusters the data items into K clusters, whose centers are
{c1,¢c2, -+ ,cx}, embeds the cluster centers into a low-
dimensional space, {y1,y2,- - ,¥Yk}, using existing mani-
fold embedding technologies, aI?d finally the hash function
is computed h(x) = sign(%m
being the similarity between x and cy,.

) with w(x,cg)

8.3 Multi-Table Hashing

Complementary hashing [111] aims to learn multiple hash
tables such that nearest neighbors have a large probability
to appear in the same bucket at least in one hash table.
The algorithm learns the hashing functions in a sequential
manner for the multiple hash tables. The compound hash
function for the first table is learnt by solving a similar
problem in [96]

Reciprocal hash tables [63] extend complementary hashing
by building a graph over a pool of B hash functions (with

the output being a binary value) and searching the best
hash functions over such a graph for building a hashing
table, with updating the graph weight using a boosting-style
algorithm and finding the subsequent hash tables.

8.4 Online Search

Most hashing algorithms focus on the problems in the
offline training stage. In this section, we briefly introduce
a few works on studying the online search stage: query-
dependent distance and index structure for hash codes.

8.4.1 Query-Dependent Distance

In contrast to multi-dimensional spectral hashing in which
the weights for the weighted Hamming distance are the
same for arbitrary quires, the query-dependent distance
approaches learn a distance measure whose weight or pa-
rameters depend on a specific query.

Query adaptive hashing [57] aims to select the hash bits
(thus hash functions forming the hash bits) according to the
query vector. The approach in the online stage selects a few
hash functions from the offline computed hash functions
h(x) = sgn(W7Tx) by solving the following,

min[lq — Wel|3 + plles. (53)
Given the optimal solution a*, of = 0 means the ith hash
function is not selected, and the hash functions correspond-
ing to the nonzero entries in o* are selected.

Query-adaptive class-specific bit weights [38], [39] presents
a weighted Hamming distance measure by learning the
weights from the query information. Specifically, the ap-
proach learns class-specific bit weights so that the weighted
Hamming distance between the hash code belonging to a
class and the hash code belonging to that class’s center (the
mean of those hash codes) is minimized.

Bits reconfiguration [70] is to learn a good distance mea-
sure over the hash codes precomputed from a pool of hash
functions: |[W7 (y; —y;)||3 with W being a transformation
matrix.
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8.4.2 Fast Search in the Hamming Space

The computation of the Hamming distance is shown much
faster than that of the distance in the input space. It is still
expensive to handle a large scale data set using linear scan.
Thus, some indexing algorithms already shown effective
and efficient for general vectors are borrowed for the search
in the Hamming space.

Multi-index hashing [77] aims to partition the binary
codes into M disjoint substrings and build M hash tables
each corresponding to a substring, indexing all the binary
codes M times. Given a query, the method outputs the NN
candidates which are near to the query at least in one hash
table.

FLANN [73] extends the FLANN algorithm [72] that is
initially designed for ANN search over real-value vectors to
search over binary vectors. The key idea is to build multiple
hierarchical cluster trees to organize the binary vectors and
to search for the nearest neighbors simultaneously over the
multiple trees by traversing each tree in a best-first manner.

8.4.3 Inverted Multi-Index

Hash table lookup with binary hash codes is a form of in-
verted index. Retrieving multiple hash buckets for multiple
hash tables is computationally cheaper compared with the
following reranking step using the true distance computed
in the coding space. It is also cheap to visit more buckets in
a single table if the standard Hamming distance is used as
the nearby hash codes of the hash code of the query can be
obtained by flipping the bits of the hash code of the query. If
there are a lot of empty buckets which increases the retrieval
cost, the double-hash scheme or fast search algorithm in the
Hamming space, e.g., [73], [77] can be used to fast retrieve
the hash buckets.

Thanks to the multi-sequence algorithm, the Cartesian
quantization algorithms are also applied to inverted in-
dex [3], [118], [16] (called inverted multi-index), in which
each composed quantization center corresponds to an in-
verted list. Instead of comparing the query with all the
composed quantization centers, which is computationally
expensive, the multi-sequence algorithm [3] is able to ef-
ficiently produce a sequence of (T') inverted lists ordered
by the increasing distances between the query and the
composed quantization centers, whose cost is O(T logT).
The study (Figure 5 in [103]) shows that the time cost of
the multi-sequence algorithm when retrieving 10K candi-
dates over the two datasets: SIFT1M and GIST1M is the
smallest compared with other non-hashing inverted index
algorithms.

Though the cost of the multi-sequence algorithm is
greater than that with binary hash codes, both are relatively
small and negligible compared with the subsequent rerank-
ing step that often is conducted in real applications. Thus
the quantization-based inverted index (hash table) is more
widely used compared with the conventional hash tables
with binary hash codes.

9 EVALUATION PROTOCOLS
9.1 Evaluation Metrics

There are three main concerns for an approximate nearest
neighbor search algorithm: space cost, search efficiency,
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TABLE 2
A summary of evaluation datasets

Dim || Reference set | Learning set | Query set
MNIST 784 60K - 10K
SIFT10K 128 10K 25K 100
SIFT1M 128 1M 100K 10K
GIST1M 960 1M 50K 1K
Tinyl M 384 1M - 100K
SIFT1B 128 1B 100M /1M 10K

and search quality. The space cost for hashing algorithms
depends on the code length for hash code ranking, and the
code length and the table number for hash table lookup. The
search performance is usually measured under the same
space cost, i.e., the code length (and the table number) is
chosen the same for different algorithms.

The search efficiency is measured as the time taken to re-
turn the search result for a query, which is usually computed
as the average time over a number of queries. The time cost
often does not include the cost of the reranking step (using
the original feature representations) as it is assumed that
such a cost given the same number of candidates does not
depends on the hashing algorithms and can be viewed as
a constant. When comparing the performance in the case
the Hamming distances in hash code ranking is used in the
coding space, it is not necessary to report the search time
costs because they are the same. It is necessary to report the
search time cost when a non-hamming distance or the hash
table lookup scheme is used.

The search quality is measured using recall@R (i.e., a
recall-I? curve). For each query, we retrieve its I? nearest
items and compute the ratio of the true nearest items in
the retrieved R items to 7', i.e., the fraction of T" ground-
truth nearest neighbors are found in the retrieved R items.
The average recall score over all the queries is used as the
measure. The ground-truth nearest neighbors are computed
over the original features using linear scan. Note that the
recall@R is equivalent to the accuracy after reordering the R
retrieved nearest items using the original features and return
the top T items. In the case the linear scan cost in the hash
coding space is not the same (e.g., binary code hashing, and
quantization-based hashing), the curve in terms of search
recall and search time cost is usually reported.

The semantic similarity search, a variant of nearest
neighbor search, sometimes uses the precision, the recall, the
precision-recall curve, and mean average precision (mAP).
The precision is computed at the retrieved position R, i.e.,
R items are retrieved, as the ratio of the number of retrieved
true positive items to R. The recall is computed, also at
position R, as the ratio of the number of retrieved true
positive items to the number of all true positive items in the
database. The pairs of recall and precision in the precision-
recall curve are computed by varying the retrieved position
R. The mAP score is computed as follows: the average
precision for a query, the area under the precision-recall
curve is computed as Y, P(t)A(t), where P(t) is the
precision at cut-off ¢ in the ranked list and A(t) is the change
in recall from items ¢ — 1 to ¢; the mean of average precisions
over all the queries is computed as the final score.
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9.2 Evaluation Datasets

The widely-used evaluation datasets are with different
scales from small, large, and very large. Various features
have been used, such as SIFT features [66] extracted from
Photo-tourism [89] and Caltech 101 [14], GIST features [79]
from LabelMe [82] and Peekaboom [95], as well as some
features used in object retrieval: Fisher vectors [81] and
VLAD vectors [33]. The following presents a brief introduc-
tion to several representative datasets, which is summarized
in Table 2.

MNIST [46] includes 60K 784D raw pixel features de-
scribing grayscale images of handwritten digits as a refer-
ence set, and 10K features as the queries.

SIFT10K [32] consists of 10K 128-dimensional SIFT
vectors as the reference set, 25K vectors as the learning set,
and 100 vectors as the query set. SIFT1M [32] is composed
of 1M 128-dimensional SIFT vectors as the reference set,
100K vectors as the learning set, and 10K as the query
set. The learning sets in SIFT10K and SIFT1M are extracted
from Flicker images and the reference sets and the query
sets are from the INRIA holidays images [31].

GIST1M [32] consists of 1M 960-dimensional GIST vec-
tors as the reference set, 50K vectors as the learning set,
1K vectors as the query set. The learning set is extracted
from the first 100K images from the tiny images [93]. The
reference set is from the Holiday images combined with
Flickr1M [31]. The query set is from the Holiday image
queries. Tinyl M [104]' consists of 1M 384-dimensional
GIST vectors as the reference set and 100K vectors as the
query set. The two sets are extracted from the 1100K tiny
images.

SIFT1B [35] includes 1B 128-dimensional BYTE-valued
SIFT vectors as the reference set, 100M vectors as the
learning set and 10K vectors as the query set. The three
sets are extracted from around 1M images. This dataset, and
SIFT10K, SIFT1M and GIST1M are publicly available?.

9.3 Training Sets and Hyper-Parameters Selection

There are three main choices of the training set over which
the hash functions are learnt for learning-to-hash algo-
rithms. The first choice is a separate set used for learning
hash functions, which is not contained in the reference set.
The second choice is to sample a small subset from the
reference set. The third choice is to use all the reference set
to train hash functions. The query set and the reference set
are then used to evaluate the learnt hash functions.

In the case that the query is transformed to a hash code,
e.g., adopting the Hamming distance for most binary hash
algorithms, learning over the whole reference set might be
over-fitting and the performance might be worse than learn-
ing with a subset of the reference set or a separate set. In the
case that the raw query is used without any processing, e.g.,
adopting the asymmetric distance in Cartesian quantization,
learning over the whole reference set is better as it results in
better approximation of the reference set.

1. http:/ /research.microsoft.com/~jingdw /SimilarImageSearch /
NNData/NNdatasets.html
2. http://corpus-texmex.irisa.fr/
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TABLE 3
A summary of query performance comparison for approximate nearest
neighbor search under Euclidean distance.

Accuracy | Efficiency | Overall
pairwise low high low
multiwise fair high fair
quantization high fair high

There are some hyper-parameters in the objective func-
tions, e.g, minimal loss hashing [74] and composite quan-
tization [117]. It is unfair and not suggested to select the
hyper-parameters corresponding to the best performance
over the query set. It is suggested to select the hyper-
parameters by validation, e.g., sampling a subset from the
reference set as the validation set which is reasonable be-
cause the validation criterion is not the objective function
value but the search performance.

10 PERFORMANCE ANALYSIS
10.1 Query Performance

In this section, we present the empirical observation and
some analysis validating the observations. We discuss about
both hash table lookup and hash code ranking, with more
focus on hash code ranking as it is more widely studied and
practically adopted. The analysis is mainly interested in the
major application of hashing: nearest neighbor search with
the Euclidean distance. The conclusion for semantic simi-
larity search in principle is similar and the performance also
depends on the ability of representing the semantic meaning
of the input features. In addition, we present empirical
results of the quantization algorithms, which are shown
better than binary code hashing, for hash code ranking and
its application to the very large scale dataset SIFT15.

10.1.1  Query Performance with Hash Table Lookup

We give a performance summary of the query scheme using
hash table lookup for the two main hash algorithms: the
binary hash codes relying on the Hamming distance and
the quantization-based hash codes relying on the Euclidean
distance.

In terms of space cost, hash table lookup with binary
hash codes has a little but negligible advantage over that
with quantization-based hash codes because the main space
cost comes from the indices of the reference items and the
extra cost from the centers corresponding to the buckets
using quantization is relatively small. Multi-assignment and
multiple hash tables increase space cost as it needs to store
multiple copies of reference vector indices. As an alternative
choice, single-assignment with a single table can be used
and but more buckets are retrieved for high recall.

When retrieving the same number of candidates, hash
table lookup using binary hash codes is better in terms of the
query time cost, but inferior to the quantization approach in
terms of the recall. In terms of recall vs. time cost the quan-
tization approach is overall superior as the cost from the
multi-sequence algorithm is relatively small and negligible
compared with the subsequent reranking step. In general,
the performance for other algorithms based on weighted
Hamming distance and learnt distance is in between. The


http://research.microsoft.com/~jingdw/SimilarImageSearch/NNData/NNdatasets.html
http://research.microsoft.com/~jingdw/SimilarImageSearch/NNData/NNdatasets.html
http://corpus-texmex.irisa.fr/
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Hash: 6 bits
Quantization: 4 bits

Hash: d; = d,
Quantization: d, > d,
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TABLE 4
A summary of performance comparison with quantization algorithms.

Fig. 3. 2D toy examples illustrating the comparison between binary
code hashing and quantization. (a) shows the Hamming distances from
clusters B and D to cluster A, usually adopted in the binary code
hashing algorithms, are the same while the Euclidean distances, used
in the quantization algorithms, are different. (b) the binary code hashing
algorithms need 6 hash bits (red lines show the corresponding hash
functions) to differentiate the 16 uniformly-distributed clusters while the
quantization algorithms only requires 4 (= log 16) bits (green lines show
the partition line).

observations holds for a single table with single assignment
or multiple assignment, and multiple tables.

10.1.2 Query Performance with Hash Code Ranking

In contrast to hash table lookup, hash code ranking is more
widely adopted in the research area of learning-to-hash and
the real search systems. The following provides a short
summary of the overall performance for three main cate-
gories: pairwise similarity preserving, multiwise similarity
preserving, and quantization in terms of search cost and
search accuracy under the same space cost, guaranteed by
coding the items using the same number of bits, ignoring the
small space cost of the dictionary in Cartesian quantization
and the distance lookup tables.

In terms of search accuracy, multiwise similarity preserv-
ing is better than pairwise similarity preserving as it consid-
ers more information for hash function learning. There is
no observation/conclusion on which pairwise (multiwise)
similarity preserving algorithm performs consistently the
best though there are a large amount of pairwise (multiwise)
similarity preserving algorithms. It is shown that the cost
function of hypercubic quantization is an approximation
of the distance-distance difference. But it outperforms pair-
wise and multiwise similarity preserving. This is because
it is infeasible to consider all pairs (all triples) of items
for the distance-distance difference in pairwise (multiwise)
similarity preserving, and thus only a small subset of the
pairs (triples), by sampling a subset of items or pairs,
are considered, while the cost function for quantization is
an approximation for all pairs of items. In general, most
binary code hashing algorithms can benefit from the kernel
hash function, and weighted Hamming distances as well as
learnt distances for binary codes, which increase the search
accuracy and also the search cost.

Compared with binary code hashing including hyper-
cubic quantization, another reason for the superiority of
Cartesian quantization is that there are only a small number

Query Training

Accuracy | Efficiency [ Overall || Efficiency
ITQ low high low high
PQ fair fair low high
CKM (OPQ) fair fair fair fair
CcQ high fair high low

of (9(L)) distinct Hamming distances in the coding space for
hypercubic quantization with the code length being L while
the number of distinct distances for Cartesian quantization
is much larger. It is shown that the performance from
learning a distance measure using a way like the quanti-
zation approach [22] or directly learning a distance lookup
table [100] from precomputed hash codes is comparable to
the performance of the Cartesian quantization approach if
the codes from the quantization approach are given as the
input.

In terms of search cost, the evaluation of the Hamming
distance using the function __popcnt is faster than the
distance-table lookup. For example, it is around twice faster
for the same code length L than distance table lookup if a
sub-table corresponds to a byte and there are totally % sub-
tables. It is worthy pointing that the Cartesian quantization
approaches relying on the distance table lookup achieve
still better search accuracy even with a code of the half
length, which indicates that the overall performance of the
quantization approaches in terms of space cost, query time
cost, and search accuracy is superior.

In a summary, if the online performance in terms of
space cost, query time cost, and search accuracy is cared
about, the quantization algorithms are suggested for hash
code ranking, hash table lookup, as well as the scheme
of combining inverted index (hash table lookup) and hash
code ranking. The comparison of the query performances
of pairwise and multiwise similarity preserving, as well as
quantization is summarized in Table 3.

Figure 3 presents 2D toy examples. Figure 3 (a) shows
that the quantization algorithm is able to discriminate the
non-uniformly distributed clusters with different between-
cluster distances while the binary code hashing algorithm
is lack of such a capability due to the Hamming distance.
Figure 3 (b) shows that the binary hash coding algorithms
requires more (6) hash bits to differentiate the 16 uniformly-
distributed clusters while the quantization algorithms only
requires 4 (= log 16) bits.

10.1.3 Empirical Results

We present the empirical results of the six representative
quantization algorithms: iterative quantization [20] with the
Hamming distance (ITQH) and with the asymmetric dis-
tance [22] (ITQA), product quantization [32] (PQ), Cartesian
k-means [75] (optimized product quantization [16]) (CKM),
composite quantization [117] (CQ), and sparse composite
quantization [118] (5Q), over two representative datasets:
MNIST [46] and SIFT1M [32]. The results are collected from
the two recent papers [117], [118]. All the algorithms learn
the hash functions and the codes over the reference sets.
We only show the results for search the nearest neighbor
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MNIST, 32 bits encoding

MNIST, 64 bits encoding
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MNIST, 128 bits encoding
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Fig. 4. The performance in terms of recall@ R over MNIST and SIFT1M for the representative quantization algorithms. ITQH = iterative quantization
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], ITQA = iterative quantization with asymmetric distance [
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Fig. 5. The performance in terms of recall and search time. (a,b) = (method, #bits). The brown curve is plotted by varying the sparsity of the
dictionary in sparse composite quantization (SQ). (a) shows the performance over a small dataset, MNIST. The time cost of ITQH with 128 bits
is the smallest, but the recall performance is not comparable to other algorithms with 64 bits. (b) shows the performance over a large dataset,
SIFT1M. The time cost with 128 bits for ITQH is similar to PQ and SQ with higher sparsity, but the recall is much lower.

(K = 1) and the conclusion holds for searching more nearest
neighbors (K > 1).

The recall@R curves are shown in Figure 4. We have
several observations. (1) The performance of ITQH (ITQ
with the Hamming distance) is the worst. This validates the
above performance analysis for binary code hashing and
quantization-based hashing: quantization is superior over
binary code hashing. (2) The performance of ITQA (ITQ
with the asymmetric distance) is better than ITQH, but the
second worst. This provides the evidence for the analysis:
the performance of binary code hashing is improved with
the learnt Euclidean-like asymmetric distance, and separat-

ing hash code computation and the distance learning in
ITQA is inferior compared with the joint manner as done
in other quantization algorithms. (3) The performances of
CQ and SQ1 (in which the dictionary of CQ is the same
sparse with PQ) are the best, which indicates the empirical
results are consistent to the analysis and the 2D illustration
shown in Figure 2.

We show the results in terms of recall and search time in
Figure 5. The computation of distance lookup table might
be expensive when the size of the reference set is very
small. Figure 5 (a) shows the performance over the MNIST
that contains only 60K reference items. There are a few
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observations: (1) SQ, PQ, CKM, and CQ outperform ITQH
and ITQA in terms of recall. (2) The time cost with 64 bits
for other algorithms is higher than ITQH with 128 bits. This
is because the computation of distance lookup table might
be expensive when the size of the reference set is very small
though the time cost of linear scan using distance lookup
table for 64 bits is very close to that using fast hamming
distance evaluation for 128 bits. In contrast, the recalls of
SQ, PQ, CKM, and CQ with 64 bits are much better than
ITQH with 128 bits, and the time costs for SQ1 and PQ are
very similar to ITQH. The reason is that the extra cost of
distance table computation is negligible when handling 1M
reference items.

In addition, we report the results over SIFT1B (BI-
GANN) [35]. We follow the inverted multi-index algo-
rithm [3]: use a coarse quantizer to build the inverted
index for fast retrieving candidates, and the Multi-D-ADC
search strategy: a fine quantizer to generate the hash codes
for the residual displacement between each vector and its
closest cell centroids obtained through the indexing stage
for efficiently reranking. More details can be found from [3],
[118]. The results are collected from [118] and do not in-
clude the results of ITQH and ITQA as their performances
are very poor. There are two results for sparse composite
quantization: SQ1 in which the dictionary is the same sparse
with PQ and SQ2 in which the sparsity of the dictionary is
equivalent to CKM. All the algorithms are trained over the
first 1M items of the reference set. The results are shown in
Table 5. The observations include: (1) The recall performance
for CQ is the best, and the search time cost is the largest due
to the expensive distance table computation, but the time
cost becomes similar to other algorithms when retrieving
more (L) candidates; (2) SQ1 (SQ2) performs better than PQ
(CKM), higher recall and almost the same search time.

10.2 Training Time Cost

We present the analysis of training time cost for the case
of using the linear hash function. The pairwise similarity
preserving category considers the similarities of all pairs
of items, and thus in general the training process takes
quadratic time with respect to the number N of the training
samples (O(N2M + N2d)). To reduce the computational
cost, sampling schemes are adopted: sample a small number
(e.g., O(N)) of pairs, whose time complexity becomes linear
with respect to N (O(NM + Nd)), or sample a subset of the
training items (e.g., containing N items), whose time com-
plexity becomes smaller (O(N2M + N2d)). The multiwise
similarity preserving category considers the similarities of
all triple of items, and in general the training cost is greater
and the sampling scheme is also used for acceleration. The
analysis for kernel hash functions and other complex func-
tions is similar, and the time complexity for both training
hash functions and encoding database items is higher.
Iterative quantization consists of a PCA preprocessing
step whose time complexity is O(Nd?), and the hash code
and hash function optimization step, whose time complexity
is O(NM? + M3) (M is the number of hash bits). The
whole complexity is O(Nd? + NM? + M?3). Product quan-
tization includes the k-means process for each partition,
and the complexity is T'NkP, where k is usually 256,
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TABLE 5
Comparison of the Multi-D-ADC system with different quantization
algorithms in terms of recall@R with R being 1, 10, 100, time cost (in
millisecond) with database vector reconstruction (7'1), time cost (in
millisecond) without database vector reconstruction but through
distance lookup tables (7°2). L is the length of the candidate list
reranked by the system. The results are collected from [118].

Alg. | L RQ1 R@I0 R@I00 | T1 | 12
BIGANN, 1 billion SIFTs, 64 bits per vector
PQ 0.158 0.479 0.713 6.2 41
CKM 0.181  0.525 0.751 11.9 4.6
CQ 10000 0.195 0.558 0.765 15.7 7.1
SQ1 0.184  0.530 0.736 73 4.3
SQ2 0.191 0.546 0.754 8.6 45
PQ 0.172  0.507 0.814 13.2 9.8
CKM 0.193  0.556 0.851 30.3 | 10.1
CQ 30000 0.200 0.597 0.869 426 | 129
SQ1 0.192 0571 0.849 15.8 9.9
SQ2 0.198 0.586 0.860 19.9 | 10.0
PQ 0.173  0.517 0.862 374 | 30.5
CKM 0.195 0.568 0.892 95.8 | 31.6
CQ 100000 | 0.204 0.612 0.920 1259 | 334
SQ1 0.194 0.584 0.903 43.7 | 309
SQ2 0.199  0.597 0.907 58.6 | 31.2
BIGANN, 1 billion SIFTs, 128 bits per vector
PQ 0.312 0.673 0.739 7.0 5.5
CKM 0.357 0.718 0.772 12.4 5.8
CcQ 10000 0.379 0.738 0.781 29.0 7.9
SQ1 0.347  0.702 0.755 8.2 5.6
SQ2 0.368 0.725 0.773 9.5 5.7
PQ 0.337 0.765 0.883 15.8 | 14.1
CKM 0.380 0.811 0.903 32.7 | 144
CQ 30000 0.404 0.833 0.906 76.4 | 16.8
SQ1 0.372 0.802 0.890 189 | 14.3
SQ2 0.392 0.821 0.904 25.8 | 14.4
PQ 0.345 0.809 0.964 48.7 | 43.3
CKM 0.389  0.848 0.970 107.6 | 44.9
CcQ 100000 | 0.413 0.877 0975 | 2423 | 47.3
SQ1 0.381  0.852 0.969 59.3 | 43.6
SQ2 0.401  0.858 0.971 774 | 439
P = %, and T is the number of iterations for the k-

means algorithm. The complexity of Cartesian k-means is
O(Nd? + d?). The time complexity of composite quantiza-
tion is O(NkPd + NP? + P?K?d).

In summary, the time complexity of iterative quantiza-
tion is the lowest and that of composite quantization is the
highest. It indicates that it takes larger offline computation
cost to get a higher (online) search performance. The com-
parison of the query performances and the training cost of
various quantization algorithms is summarized in Table 4.
In comparison to binary code hashing, the quantization
category is in theory cheaper and both the categories can
benefit from sampling a subset of items.

11 FUTURE TRENDS

The main goal of the hashing algorithm is to accelerate the
online search as the distance can be efficiently computed
through fast Hamming distance computation or fast dis-
tance table lookup. The offline hash function learning and
hash code computation are shown to be still expensive,
and have become attractive in research. The computation
cost of the distance table used for looking up is thought
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ignorable and in reality could be higher when handing high-
dimensional databases. There are also increasing interests
in other topics, such as multi-modality and cross-modality
hashing and semantic quantization. Recent deep learning
developments also indicate an emerging topic, learning an
end-to-end hashing system without a separate intermediary
feature extraction step.

11.1 Speed up the Learning and Query Processes

Scalable Hash Function Learning. The algorithms depending
on the pairwise similarity, such as binary reconstructive
embedding, usually sample a small subset of pairs to reduce
the cost of learning hash functions. It is shown that the
search accuracy is increased with a high sampling rate, but
the training cost is greatly increased. The algorithms even
without relying pairwise similarity, e.g., quantization, are
also shown to be slow and even infeasible when handling
very large data, e.g., 1B data items, and usually have to
learn hash functions over a small subset, e.g.,, 1M data
items. This poses a challenging request to learn the hash
function over larger datasets.

Hash Code Computation Speedup. Existing hashing algo-
rithms rarely take into consideration the cost of encoding
a data item. Such a cost during the query stage becomes
significant in the case that only a small number of database
items or a small database are compared to the query. The
search combined with inverted index and compact codes is
such a case. When kernel hash functions are used, encoding
the database items to binary codes is also much more ex-
pensive than that with linear hash functions. The composite
quantization-like approach also takes much time to compute
the hash codes.

A recent work, circulant binary embedding [114], accel-
erates the encoding process for the linear hash functions,
and tree-quantization [2] sparsifies the dictionary items into
a tree structure, to speeding up the assignment process. It
expects more research study to speed up the hash code com-
putation for other hashing algorithms, such as composite
quantization.

Distance Table Computation Speedup. Product quantization
and its variants need to precompute the distance table be-
tween the query and the elements of the dictionaries. Most
existing algorithms claim that the cost of distance table com-
putation is negligible. However in practice, the cost becomes
bigger when using the codes computed from quantization to
rank the candidates retrieved from inverted index. This is a
research direction that will attract research interests, such as
a recent study, sparse composite quantization [118].

11.2 Promising Extensions

Semantic Quantization. Existing quantization algorithms fo-
cus on the search under the Euclidean distances. Like binary
code hashing algorithms where many studies on seman-
tic similarity have been conducted, learning quantization-
based hash codes with semantic similarity is attracting
interests.

Multiple and Cross Modality Hashing. One important char-
acteristic of big data is the variety of data types and
data sources. This is particularly true to multimedia data,
where various media types (e.g., video, image, audio and
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hypertext) can be described by many different low- and
high-level features, and relevant multimedia objects may
come from different data sources contributed by different
users and organizations. This raises a research direction,
performing joint-modality hashing learning by exploiting
the relation among multiple modalities, for supporting some
special applications, such as cross-model search. This topic
is attracting a lot of research efforts, such as collaborative
hashing [62], and cross-media hashing [90], [91], [123].

Joint Feature and Hash Learning. Almost all existing algo-
rithms assume the features are already given for learning
hash functions. It would be an interesting trend that the
features and the hash functions are jointly learnt. There are
a few works [109] [119] very recently. We believe that an
end-to-end hashing learning system will become hot.

12 CONCLUSION

In this paper, we categorize the learning-to-hash algorithms
into four main groups: pairwise similarity preserving, mul-
tiwise similarity preserving, implicit similarity preserving,
and quantization and present a comprehensive survey, and
present their relations. We point out the empirical observa-
tion that quantization is superior in terms of search accuracy,
search efficiency and space cost, and the future research
directions.
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